Search results for "Tongue region"

showing 2 items of 2 documents

Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy

2021

Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in pri…

Models MolecularAzidesProtein ConformationPhenylalaninespektroskopiaTongue regionGeneral Physics and Astronomyfotobiologia010402 general chemistryTracking (particle physics)01 natural sciences03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsSpectroscopy Fourier Transform InfraredAmino Acid SequenceAmino AcidsPhysical and Theoretical ChemistryFourier transform infrared spectroscopyBilin030304 developmental biology0303 health sciencesBinding SitesStaining and LabelingbiologyPhytochromeChemistryDeinococcus radioduransChromophorePhotochemical Processesbiology.organism_classification0104 chemical sciencesKineticsBiophysicsPhytochromeproteiinitvalokemiaSignal transductionProtein BindingSignal TransductionPhysical Chemistry Chemical Physics
researchProduct

Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching

2019

Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although crystal structures of dark and light adapted states have been determined, the molecular mechanisms underlying photoactivation remains elusive. Here we demonstrate that the conserved tongue region of the PHY domain of a 57kDa photosensory module of Deinococcus radiodurans phytochrome, changes from a structurally heterogeneous dark state to an ordered light activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phy…

Models MolecularLightTongue regionBiophysicsphototransduction03 medical and health sciences0302 clinical medicineProtein DomainsPHYmolekyylidynamiikkaprotein structureNMR-spektroskopiaNuclear Magnetic Resonance Biomolecular030304 developmental biologyphytochrome0303 health sciencesPhytochromebiologyChemistryProtein NMR SpectroscopyDeinococcus radioduransArticlesDarknessbiology.organism_classificationmolecular dynamicsNMRStructural heterogeneityDark stateModulationBiophysicsvalokemiaproteiinitDeinococcusPhytochrome030217 neurology & neurosurgeryBiophysical Journal
researchProduct